作者 琥珀
导言:循环神经网络(RNNs)具有保留记忆和学习数据序列的能力。由于RNN的循环性质,难以将其所有计算在传统硬件上实现并行化。当前CPU不具有大规模并行性,而由于RNN模型的顺序组件,GPU只能提供有限的并行性。针对这个问题,普渡大学的研究人员提出了一种LSTM在Zynq 7020 FPGA的硬件实现方案,该方案在FPGA中实现了2层128个隐藏单元的RNN,并且使用字符级语言模型进行了测试。该实现比嵌入在Zynq 7020 FPGA上的ARM Cortex-A9 CPU快了21倍。
LSTM是一种特殊的RNN,由于独特的设计结构,LSTM适合于处理和预测时间序列中间隔和延[……]